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The entropy of a scalar field at the horizon is investigated in the Vaidya space–time. We
take into account the effect of the generalized uncertainty principle on the state density
and the entropy. The divergence in the brick-wall model is removed and the entropy
proportional to the horizon area is obtained.
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The discovery of the Hawking radiation (Hawking, 1975) confirms the con-
jecture that the black-hole entropy is proportional to the horizon area (Bekenstein,
1973). Many efforts have been devoted to the explanation of the black-hole en-
tropy (Gao and Liu, 2000; Hod, 2000; Jing, 1998; Li, 2000; Li and Zhao, 2000;
Li and Zhao, 2001; Liberatiet al., 1997; Liu and Zhao, 2000; Liu and Zhao,
2001; Mukohyama and Israel, 1998; Racz, 2000; Shen, 1997; Teitelboim, 1995; ‘t
Hooft, 1985). The brick-wall model proposed by ‘t Hooft (1985), tries to attribute
the black-hole entropy to the quantum states of the field outside the horizon, in
which the entropy proportional to the horizon area is obtained. But it is depen-
dent on a cutoff near the horizon. The later investigation argue that the black-hole
entropy derives from the “wall contribution” (Mukohyama and Israel, 1998), that
is, because of the degree of freedom of the field near the horizon (Gao and Liu,
2001; Li and Zhao, 2001; Liu and Zhao, 2001). Thus we can compute the entropy
of a nonstationary black hole in the context of the local equilibrium in the vicinity
of the horizon (Li and Zhao, 2001). The entropy is still divergent as the cutoff
vanishes. However, it is pointed out that (Li, 2002) the generalized uncertainty
principle (GUP) essentially influences the density of the states near the horizon
and removes the divergence appearing in the brick-wall model. Here, we apply the
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GUP to a nonstationary case: Vaidya black hole. We follow the preceding work
(Li and Zhao, 2001), the entropy of a nonstationary hole is investigated by the
membrane approach: the entropy is attributed to the field on the membrane which
is a 2D surface just at the horizon. This is based on the following reasons: the
entropy of the hole is related to the existence of the horizon, that is, the entropy
is the intrinsic property of the horizon. Furthermore, as an extensive quantity, the
entropy should be proportional to the volume (for a 3D system) or the area (for a
2D system). Therefore, it is natural to count the quantum number of the horizon.
Unfortunately, the cutoff introduced by hand is necessary to regulate the diver-
gence of the entropy in the preceding work (Li and Zhao, 2001). This difficulty
can be overcome by the GUP.

Let us start with the geometry of the Vaidya black hole (Carmeli, 1982)

ds2 = −
(

1− 2m(υ)

r

)
dυ2+ 2dυ dr+ r 2 dθ2+ r 2 sin2 θ dϕ2, (1)

which describes an evoporating hole with mass loss rateṁ= ∂m/∂υ.
The location of the horizon is given by (Luo and Zhao, 1993)

rh = 2m

1− 2ṙh
, (2)

where ṙh = ∂rh/∂υ. Obviously, the horizon does not coincide with the infinite
redshift-surfacer = 2m(υ). However, this is coordinate-dependent. Introducing
the following transformation (Li, 1999):

R= r − rh, dR= dr − ṙh dυ, (3)

Eq. (1) can be reduced to

ds2 = −
(

1− 2ṙh − 2m

r

)
dυ2+ 2dυ dR+ r 2 (dθ2+ sin2 θ dϕ2). (4)

The horizon is directly located byg00 = 0. We letdR= 0 and obtain

ds2
m = −

(
1− 2ṙh − 2m

r

)
dυ2+ r 2 (dθ2+ sin2 θ dϕ2), (5)

which describes a surface outside the horizon. Substituting (5) into the massless
scalar field equation as follows:

1√−g
∂µ(
√−ggµν∂ν8) = 0, (6)

we obtain

−r 2

a
∂2
υ8−

1√
a
∂υ(r 2/

√
a)∂υ8+ ctgθ∂θ8+ ∂2

θ 8+
1

sin2 θ
∂2
ϕ8 = 0, (7)
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where

a = 1− 2ṙh − 2m

r
. (8)

We substitute the ansatz

8 = F(υ, r )Ylm(θ , ϕ), (9)

into (7) and obtain

r 2∂
2F

∂υ2
+√a∂υ(r 2/

√
a)
∂F

∂υ
− ab2F = 0 (10)

and

ctgθ
∂Y

∂θ
+ ∂

2Y

∂θ2
+ 1

sin2 θ

∂2Y

∂ϕ2
+ b2Y = 0, (11)

whereb is the separation constant. Setting

Y = ei Z (θ ,ϕ), (12)

we obtain (
∂Z

∂θ

)2

+ 1

sin2 θ

(
∂Z

∂ϕ

)2

− b2 = 0. (13)

The momentums respectively conjugate toθ , ϕ read

pθ = ∂z

∂θ
, pϕ = ∂Z

∂ϕ
; (14)

thus we obtain the square modulus of momentum

P2 = Pi Pi = g11
m P2

θ + g22
m P2

ϕ =
b2

r 2
h

. (15)

Because of the GUP (Adleret al., 2001; Ahluwalia, 2000; Changet al., 2002;
Garay, 1995; Kastrup, 1997; Kemptet al., 1995; Rama, 2001)

1x1p ≥ h+ λ
h

(1p)2, (16)

the equation of the state density should be modified by

dn= d2Ex d2Ep
(2πh)2(1+ λp2)2

, (17)

whereλ ∼ G is of order of the Planck areal 2
p. Note that the state density of the

high frequency is suppressed by a factor (1+ λp2)−2. However, (17) returns to
the usual case ifλ→ 0. In the following discussion, we take the natural units
h = c = G = kB = 1.
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From (17), the number of quantum states with energy less thanω is given by

0(ω) =
∫

dn= 1

(2π )2
(
1+ λ b2

r 2
h

)2

∫
dθ dϕ dpθ dpϕ , (18)

whereb is to be determined. (10) has the form of the standard wave equation,
in terms of the tortoise coordinate (Zhao and Dai, 1992); this meansF ∼ e−iωυ .
Generally, we let

F = f (υ, r )e−iωυ ; (19)

then (10) can be reduced to

r 2( f̈ − ω2 f )+√a ḟ ∂̄υ(r 2/
√

a)+ ab2 f = 0, (20)

2r 2 ḟ +√a∂̄υ(r 2/
√

a) f = 0, (21)

Where ḟ = ∂ f/∂υ. Substituting (21) into (20), we have

b2 = r 2

a

(
ω2+ 2 ḟ 2

f 2
− f̈

f

)
= r 2

a
(ω2+3), (22)

where

3 = 2 ḟ 2

f 2
− f̈

f
. (23)

Now we study the asymptotic form oḟf (υ, r ) at the horizon. From (20), we
have

ar2( f̈ − ω2 f )+ ḟ

(
2arṙ − 1

2
r 2ȧ

)
+ a2b2 f = 0, (24)

whereṙ = ∂r/∂υ, ȧ = ∂a/∂υ. At the horizon, we have

r = rh, a = 0, (25)

then

ḟ (rh, υ) = 0, (26)

which means thatf is independent ofυ at the horizon. Near the horizon, the
solution to (10) reads

F ∼ e−iωυ , (27)

and

3 = 0, b2 = r 2ω2/a. (28)
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Because of (15) and (22), (18) is reduced to

0(ω) = 2

(2π )2
(
1+ λ b2

r 2

)2

∫
dθ dϕ

∫ √
b2− p2

θ sinθ dpθ = b2(
1+ λ b2

r 2

)2 ,

(29)

where the integration goes over those values ofpθ for which the argument of the
square root is positive. According to quantum statistical mechanics, the free energy
reads

F = −
∞∫

0

0(ω)

eβω − 1
dω = −

∞∫
0

b2 dω

(eβω − 1)
(
1+ λ b2

r 2

)2 , (30)

and the entropy

S= β2∂F

∂β
= β2

∞∫
0

ω eβωb2

(eβω − 1)2
(
1+ λ b2

r 2

)2 dω

= r 2β2

a

∞∫
0

(ω2+3)ω dω

(1− e−βω)(eβω − 1)
(
1+ λ(ω2+3)

a

)2 . (31)

Note that3 = 0 at the horizon. We are only interested in the contribution
from the quantum states covering the horizon, then

S0 = r 2β2

a

∞∫
0

ω3 dω

(1− e−βω)(eβω − 1)
(
1+ λ

aω
2
)2 . (32)

By using two inequalities

eβω − 1 > βω,

1− e−βω >
βω

1+ βω , (33)

we obtain the upper bound of the entropy

S0 <
r 2

a

∞∫
0

ω + βω2(
1+ λ

aω
2
)2 dω = r 2

a

[
a

2λ
+ πβ

4

(a

λ

)3
]

= r 2

(
1

2λ
+ πβa1/2

4λ3/2

)
= Ah

8πλ
. (34)

At the horizona = 0, Ah = 4πr 2
h .
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So we obtain the entropy bound of a Vaidya hole by counting the quantum
states of the field covering the horizon. It is still proportional to the horizon area.
Comparing to the ‘t Hooft brick-wall model (‘t Hooft, 1985), the entropy, as shown
by (34), is convergent, without any cutoff. Note that the entropy of a Vaidya hole
is less than a static hole that with same mass. This can be understood as follows:
a Vaidya hole is in a nonequilibrium state with less entropy than the equilibrium
state. This work is supported by the National Science Foundation of China under
Grant No. 10073002.
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